Information Set Generation in Partially Observable Games

Mark Richards and Eyal Amir
Computer Science Department
University of Illinois at Urbana-Champaign

Abstract
We address the problem of making single-point decisions in large partially observable games, where players interleave observation, deliberation, and action. We present information set generation as a key operation needed to reason about games in this way. We show how this operation can be used to implement an existing decision-making algorithm. We develop a constraint satisfaction algorithm for performing information set generation and show that it scales better than the existing depth-first search approach on multiple non-trivial games.

Introduction
Many real-world decision problems can be framed as games, including securities trading, business acquisitions and mergers, and military operations. The focus of this paper is the extensive form game. Typically expressed in tree form, this formal construct can be used to reason about environments which involve multiple agents who make finite sequences of decisions in the presence of uncertainty about the state of the world and the decisions made by other agents.

An information set is similar to a belief state—a probability distribution over possible worlds—and the two terms are sometimes used interchangeably. Here, we emphasize that the members of an information set are nodes in a game tree. Each node corresponds to a unique sequence of actions. Therefore, an information set implicitly encodes not only the set of all possible current states but also the set of all plausible game histories.

The probability of reaching a node is the product of the probabilities of the branches that lead to it. We can estimate the probability that a particular node is the true state by simulating the corresponding game history and estimating the probability of each opponent action along the way. Through simulation, we can identify not only what the world state may have been but also what the opponent’s knowledge state would have been at each decision point.

Existing solutions to the information set generation problem are based on depth-first search in the game tree and do not scale well. We present a novel information set generation algorithm and demonstrate that it can find nodes in the information set in many cases where existing methods cannot.

Background
Kuhn formally described imperfect information games in terms of nodes and branches of a tree (Kuhn 1953). To describe a game using logical constructs, we adopt the following conventions. In a game tree Τ, each non-terminal node corresponds to a decision made by one of K players P1,...,PK or a chance event (e.g., roll of a die) executed by a special player denoted P0. The full game state s at a node at depth t comprises the true logical state s.P and a list of observations s.o(k) for each player that constitute Pk’s knowledge base at that node. Nominally, s.P is a subset of a finite set P of propositional variables or ground predicates defined by a game description. The variables in P are those that are TRUE in s. If Τ includes numerical values (e.g., a running score), s encodes those values as well. Let K(s) denote the player whose turn it is to move at s.

Let a1:t denote a sequence of actions a1,...,at, and let a1:t.a(t+1) denote the extension of that sequence by at+1. We use S(a1:t) to denote the state that is reached when action sequence a1:t is executed from the start state s0.
Given a sequence of observations $o_{1:t}$ for P_k, the information set $I_{o_{1:t}}$ is the set of action sequences that lead to a state where P_k would have those observations. That is, a legal sequence $a_{1:t} \in I_{o_{1:t}}$ iff $K(S(a_{1:t})) = P_k$, and $S(a_{1:t}), o_{1:t} = o_{1:t}$.

For a state s corresponding to a terminal node, $U_k(s)$ denotes the numerical payoff (utility) for P_k if that state is the outcome of the game.

Figure 1 shows a simple poker game for two players. The decision point for P_0, the dealer, is depicted as a circle. Decisions for P_1 and P_2 are shown as triangles and diamonds, respectively.

Both P_1 and P_2 initially hold two dollars and are required to put one dollar in the pot as an ante. The dealer, holding a King and a Jack ($K > J$), randomly deals one card to P_1 and the other to P_2, with P_1 holding the King in the left subtree and the Jack in the right subtree. P_1 learns the outcome of the deal; P_2 does not. P_1 and P_2, in turn, then choose to fold (left branch) or to bet their other dollar (right branch).

The payoffs shown at the terminals are for P_1, P_2’s payoffs are the negation of these values. If one player bets and the other passes, the bettor wins a net payoff of 1 (the other player’s ante). Otherwise, in the case of a showdown, the player with the stronger hand wins a net payoff of two dollars if both players bet or one dollar if both folded.

Because P_2 does not observe the outcome of the deal, its information is the same at $B.1$ and $B.2$. That is, $\{B.1, B.2\}$ is one of P_2’s information sets (These nodes are connected in Fig. 1 to indicate that they are in the same information set). When P_1 bets, P_2 knows only that the true state of the game is either $B.1$ or $B.2$; this encodes the fact that P_2 does not know whether P_0 selected branch K_1, J_2 or K_2, J_1.

A strategy σ_k for P_k defines a probability for every outgoing branch from all members of P_k’s information sets. In Fig. 1, P_1 has two singleton information sets: $\{K\}$ and $\{J\}$. P_1 must assign probabilities such that $K_f + K_b = 1$ and $J_f + J_b = 1$. Likewise, P_2 must assign probabilities to outgoing branches from nodes in $\{F.1, F.2\}$ and $\{B.1, B.2\}$. Note that while P_2 would prefer $B_b = 1$ in $B.1$ and $B_f = 1$ in $B.2$, the uncertainty dictated by the rules of the game requires that this value be the same in both cases (i.e., P_2 views this as a single decision).

Under perfect information, the equilibrium strategy for both players would be to bet on the King and fold with the Jack; the expected value would be 0. Because of the partial observability, P_1 can guarantee an expected payoff of at least 1/6 by exploiting the uncertainty that it knows P_2 will have. The equilibrium solution requires that P_1 should bluff on the Jack with probability $1/3$.

Logic Description Language

The Game Description Language (GDL) can be used to describe games of perfect information (Love, Hinrichs, and Genesereth 2006). Edelkamp and Kissmann have shown how GDL descriptions can be converted to a Planning Domain Description Language (PDDL) specification with only a minor extension to PDDL to support utility functions for each player at terminal nodes (Edelkamp and Kissmann 2007). Thielscher has developed GDL-II, an extension to GDL that supports imperfect information games (Thielscher 2010). In GDL, each player is notified of all the moves made by other players, allowing each player to completely update its internal representation of the true world state. In GDL-II, by contrast, the game description specifies an observation that each player receives for each move. Players must use their list of observations together with logical inference to deduce possible world states.

Thielscher has shown that GDL-II can be embedded in the situation calculus, providing a reasoning system that is theoretically both sound and complete. Many practical challenges remain, however. A system might theoretically prove the formula (holds p1 king) XOR (holds p2 king), but it is not clear how a standard theorem prover would be able to manage analysis of the probability for each possibility. For our simple poker game, it would be dangerous for P_2 to assume that (holds p1 king) and (holds p2 king) are equally likely to be TRUE, given that P_1 bet. Rather than trying to reason about specific formulae, we propose to reason about the probability of each complete state in the information set or, equivalently, the probability of the corresponding action sequences. Also, for games with large information sets, it may be feasible only to analyze a sampled subset of the information set.

We have developed the Partially Observable Game Domain Description Language (POGDDL) as an extension of PDDL 2.2 (Edelkamp and Hoffmann 2004). Notably, this subset of the PDDL language offers support for derived predicates and numerical fluents.

We use the same extension described in (Edelkamp and Kissmann 2007) to specify payoffs for each player:

```
(:gain <typed list (variable)> <f-exp> <GD>)
```

The first parameter specifies a list of players. The second parameter is the numerical reward those players attain when the goal condition, a logical formula given by the third parameter, is achieved in a terminal state.

The key syntactic extension that we add to support partial observability is an observe construct, which appears in the (possibly conditional) effects clause of an action and
specifies the observation each player receives for each action. These observations may vary by player.

Figure 2 shows a POGDDDL encoding of the simplified poker game. For P_1, the information set that corresponds to $o_{1:1}$ is $\{(\text{deal-stronger } p1)\}$, and for $o_{1:1} = \{(\text{stronger } p2)\}$, it is $\{(\text{deal-stronger } p2)\}$. These correspond to $\{K\}$ and $\{J\}$, respectively, in Figure 1.

For P_2, the information set for $a_{1:2} = \{(\text{stronger } p2), (\text{pl-choose pass})\}$ is $\{(\text{deal-stronger } p1), (\text{pl-choose pass})\}$, $\{(\text{deal-stronger } p2), (\text{pl-choose pass})\}$, and for $o_{1:2} = \{(\text{stronger } p2), (\text{pl-choose bet})\}$, it is $\{(\text{deal-stronger } p1), (\text{pl-choose bet})\}$, $\{(\text{deal-stronger } p2), (\text{pl-choose bet})\}$. The former corresponds to the set $\{F_1, F_2\}$ in Figure 1 and the latter to $\{B_1, B_2\}$.

1: function CHOOSEMOVE(Obs $a_{1:t}$) 2: $I = \text{INFORMATIONSET}(o_{1:t})$ 3: $L = \text{LEGALMOVES}(I)$ 4: for each $a_{1:t} \in I$ do 5: for each $a \in L$ do 6: $V(a_{1:t}, a) = \text{EVAL}(S(a_{1:t}a))P(a_{1:t})$ 7: return $\arg\max_a \sum_{a \in L} V(a_{1:t}, a)$

Figure 3: Single-point decision strategy with information set generation.

Figure 3 shows a single-point decision procedure described in (Parker, Nau, and Subrahmanian 2005). In the original formulation, the algorithm takes a set of possible states as an input parameter. This set is computed in a game-specific way. We modify the algorithm to take instead only a list of observations; we then use our general information set algorithm to identify possible game histories.

By simulating a plausible sequence and checking which actions’ preconditions are satisfied in the resulting state, we identify possible legal moves. Then for each possible state and each legal action, we estimate the value of the successor state using some heuristic evaluation function. This may be computed as function of the logical state variables (Kuhlmann, Dresner, and Stone 2006) or by using Monte Carlo Search methods (Kocsis and Szepesvári 2006).

The estimated values are weighted by the agent’s estimate of the probability of the corresponding game history. Some of the actions in $a_{1:t}$ may be opponent moves, so this process of estimating probabilities requires opponent modeling. A key advantage of our ISG approach is that P_k can partially simulate a possible sequence of moves up to an opponent’s decision point. Let P_k be an opponent of P_k, and suppose that $K(S(a_{1:t-1})) = P_k$. By considering the observations that P_k would have had at $S(a_{1:t-1})$, P_k can generate P_k’s information set at that point, and then analyze that decision point from P_k’s perspective, in order to estimate $P(a_{|S(a_{1:t-1})})$. Note that this method provides a general approach for P_k to reason about what P_k knows.

Implementations of this mode of reasoning has proven effective in systems designed to play specific games, such as Scrabble (Richards and Amir 2007).

Information Set Generation

Algorithm DFS-INFOSET, shown in Figure 4, outlines a naïve but generally applicable way for identifying sequences of actions that are consistent with a player’s observations. This straightforward approach is alluded to in (Parker, Nau, and Subrahmanian 2005) and (Russell and Wolfe 2005).

Given a list of observations $o_{1:t}$, the algorithm traverses the game tree in a depth-first manner, returning all sequences of actions for which the observations for P_k would be exactly those specified by $o_{1:t}$.

At the ith level of recursion, the function checks that the simulated observation for P_k at a node at the ith level of the tree is the same as the actual observation o_i given in the input, and only makes a recursive call if they match.

1: function DFS-INFOSET($a_{1:t}, o_{1:t}^{(k)}$, I, s, t) 2: if $t > T$ then 3: $I \leftarrow I \cup a_{1:t}$ 4: else 5: for each legal action a at s do 6: $s' = \text{GETNEXTSTATE}(s, a)$ 7: if $s' o_{t+1}^{(k)} = o_{t+1}^{(k)}$ then 8: DFS-INFOSET($a_{1:t}a, o_{1:t}^{(k)}$, I, s', $t + 1$)

Figure 4: Information set generation as depth-first search. The function should be called with an empty action sequence, P_k’s current observation list, $I = \{\}$, $s = s_0$, and $t = 0$. When the top-level call returns, I holds the full information set.

While straightforward and generally applicable in theory,
the algorithm is often prohibitively expensive.

Suppose the first move of the game is a random face-down deal of one of n house cards, such that P_k’s observation is (deal t ?), regardless of which card is dealt. Then, m moves later, that card is revealed to be c1, so that $o_{m+1}^{(k)} = (\text{house c1}).$ Let the branching factor of the game tree be b for levels 2 to $m+1$. Now suppose that the first branch searched at level 1 corresponds to (deal c0). The DFS-Infoset function may potentially search a subtree of size b^m exhaustively, pruning only at level $m+1$ each time when it is discovered that the simulated observation (house c1) does not match the actual observation (house c1).

Such effort is both intractable and unnecessary. P_k should be able to infer from $o_{m+1}^{(k)} = (\text{house c1})$ that $a_1 = (\text{deal c1}),$ without having to search a large portion of the game tree up to depth $m+1$. Systems targeted to one game tend to hard-code such domain-specific understanding.

Information Set Generation as Constraint Satisfaction

A better approach for the general case is to frame the information set problem as a more general constraint satisfaction problem that makes it possible to use all relevant observations to appropriately prune the search space. Algorithm CSP-InfosetSample (Figure 5) follows this approach.

```
1: function CSP-InfosetSample(SG, o_{1,T}, A[])  
2:     if INCONSISTENT(SG) then  
3:         return ∅  
4:     else if COMPLETE(A) then  
5:         return A  
6:     else  
7:         t ← RANDOMUnsetTimestep(SG)  
8:         L ← PLASIBLY-LegalMoves(SG)  
9:         a = RANDOMElement(L)  
10:         A[t] ← a  
11:         SG' = PROPAGATE(SG, t, a, o_{1,T})  
12:         CSP-InfosetSample(SG', o_{1,T}, A)  
```

Figure 5: Information Set Generation as a Constraint Satisfaction Problem.

This algorithm solves a general T-variable constraint satisfaction problem, where T is the total number of actions that have been executed by all players up to the current point in the game. For $1 \leq t \leq T$, the tth variable corresponds to the tth action taken, and the possible values are the possible actions in the game. A player’s information set is the set of all feasible solutions to the CSP. As written, the algorithm returns a single feasible action sequence (or ∅, if the algorithm’s non-deterministic choices lead to a conflict.) A sample of possible nodes from the information set can be obtained by running the algorithm repeatedly.\(^1\)

\(^1\)Alternatively, the algorithm can be modified to produce the full information set by changing the random selection at line 9 to iterate over all legal actions and then collect the sequences found at line 5 into a set. This may be prohibitively expensive in games with large information sets.

Figure 6: Helper functions for CSP-InfosetSample. TRUTH-VAL(S,p) returns True when p appears as a positive literal in S and False when p is a negative literal.

The basics of the backtracking search are implemented in CSP-InfosetSample. The inputs are an initialized special data structure which we call a stage graph (described in detail below), the observation sequence for the active player up to the current point in the game, and an empty fixed-length vector A representing an action sequence.

At the initial invocation, each action in A is undefined. The result of the call to CSP-InfosetSample is a conflict, an action sequence representing a node from the information set, or a recursive call with an additional slot in A fixed to a single concrete action. In the latter case, the time step selected is chosen at random (line 7) from among all the remaining time steps for which actions have not already been fixed by previous calls to the function.

Having selected a particular time step t, the algorithm uses the game rules and information in the stage graph to
identify all possible actions whose preconditions and effects are not inconsistent with other actions in A that have been fixed by previous calls and whose resulting observation matches o_i. From this set of possible actions, one is randomly selected (line 9). From the perspective of solving a CSP, this corresponds to assigning a value to a variable. Fixing a particular action a for $A[t]$ (line 10) constrains the truth value of some predicates at time $t-1$ because of the preconditions of a and constrains some predicates at time t because of the effects of a.

The PROPAGATE function returns an updated stage graph that encodes these ramifications (line 11). Then CSP-INFOSETSAMPLE is recursively called with the updated stage graph and action sequence. If a subset of actions selected in A lead to a situation where there are no legal actions possible for one or more other time steps, then a conflict is generated and the function returns (line 3). Otherwise, if an action is successfully assigned at every time step in A, then the action sequence A corresponds to a node in the information set and is returned. The CSP-INFOSETSAMPLE function can be viewed as the high-level management of the backtracking search for feasible solutions.

The PROPAGATE, REEVALUATE, and INITGRAPH functions manage the stage graph data structure that serves to reduce the branching factor of the search for solutions in the CSP by eliminating many actions from consideration. A stage graph is similar to the planning graph structures used in the AI planning (Blum and Furst 1997). For each time step, there is a stage that stores the set of potential actions that are plausible at that timestep and a vector with one of three values for each proposition in the resulting state: TRUE, FALSE, or UNKNOWN.

In function INITGRAPH, The 0th stage of the graph is initialized with the (known) start state; there is no action associated with the 0th stage (line 23). For timesteps t from 1 to T, stage t of the graph is initialized (lines 24–36) by (1) computing the set of actions for which the resulting observation would match the observation $o^{(k)}_t$ actually received and for which the preconditions do not conflict with the propositional values at stage t (line 26); (2) setting known values for the propositions at t that are common effects of all the potential actions (line 32); (3) propagating the values from stage t for propositions that are unaffected by any of the potential actions (line 36); and (4) marking as UNKNOWN those propositions that appear in the effects of at least one plausible action but not in all (line 34). Additionally, if there are any propositions entailed by the disjunction of the preconditions of potential actions at t that were UNKNOWN at stage $t-1$, those values are updated and stage $t-1$ is marked to be re-evaluated. Specifically, the plausible action set at that stage must be recomputed. (lines 27–29).

The PLASIBLEACTIONINFO function identifies actions for a particular time step that are not inconsistent with information already stored in the stage graph. This is different than simply identifying provably legal actions because of the presence of UNKNOWN values in the stage graph.

Suppose we are considering plausible actions at time t. If action a has precondition $p_1 \land p_2$ and stage t holds that $p_1 = TRUE$ and $p_2 = FALSE$, then the action is definitely not plausible. However, if $p_1 = TRUE$ and $p_2 = UNKNOWN$, then a might be legal. We cannot prove that it is legal, but neither can we prove that it is not. We therefore say that it is “plausible” and that it does not conflict with the information in the stage graph.

Propositions (or their negations) that are entailed by the disjunction of the preconditions of all plausible actions must hold at the previous time step. These “definite preconditions” are returned from PLASIBLEACTIONINFO as DefPre. Similarly, the set of propositions that are entailed by the disjunction of the effects of possible actions must hold at t. These “definite effects” are returned as DefEff. Both DefPre and DefEff include one set of known positive literals and one set of known negative literals.

Propositions that are entailed by the effects of one or more of the possible actions but not all of them are “possible effects” and are returned as PossEff. The PLASIBLEACTIONINFO function requires as parameters the observation at time t and the graph stages for time steps $t-1$ and t. The function ensures that an action is excluded from the plausible set for t iff its precondition conflicts with known predicate truth values at $t-1$ or its effects conflict with known predicates at t.

During the initialization of stage t, it is possible to identify propositions whose truth values at $t-1$ are determined by DefPre but whose values were UNKNOWN during the initialization of stage $t-1$ (lines 27–29). Therefore, a vector of Boolean flags Redo is maintained that keep track of stages whose set of plausible actions may need to be recomputed.

The REEVALUATE function (lines 8–20) runs a fixed point calculation that repeatedly computes plausible action sets until there are no additional propositions at any stage whose values can be changed from UNKNOWN to either TRUE or FALSE.

When a particular action a is fixed for time step t in CSP-INFOSETSAMPLE, the PROPAGATE function (lines 1–6) updates the stage graph to reflect the fact that the preconditions of a hold at $t-1$ and the effects of a hold at t. As in stage graph initialization, the ramifications of these updates are computed by invoking REEVALUATE.

Time and Space Complexity The space taken by the stage graph is $O(|P|T)$, where $|P|$ is the number of ground propositions in the game description. The overall running time depends most crucially on the REEVALUATE function, and in particular on the number of iterations of the loop at lines 9–19. The number of iterations is bounded by the number of propositions marked as UNKNOWN during the stage graph initialization phase. Each iteration of the REEVALUATE function (other than the last) reduces the number of UNKNOWNS by at least 1, so there are at most $|P|T$ iterations.

The overall expense of information set generation depends on the expected number of times that CSP-INFOSETSAMPLE must be called in order to obtain a viable action sequence. This efficiency varies greatly from game to
Empirical Results

We have encoded three non-trivial games in POGDDL. Racko and Battleship are popular table games; the Game of Pure Strategy comes from the game theory literature. For each game type, we varied complexity parameters (number of cards, size of game grid, etc.) to measure the performance and scalability of both DFS-Infoset and CSP-InfosetSample. For each game instance, we generated ten random positions and tested each algorithm’s ability to sample from the current player’s information set. For each position studied, each algorithm was allotted up to 30 seconds to search for nodes in the information set.

Racko Racko consists of a deck cards numbered 1 to \(n \) and a rack for each player with \(k \) ordered slots, with \(n > 2k \). The cards are shuffled and then the first \(2k \) cards are dealt into the players’ rack slots, such that players see only their own cards. The next card is placed face-up as the initial discard pile, and the remainder of the cards are placed face down as the draw pile. Each player’s goal is to get the cards in his rack in ascending order. On each turn, a player may exchange a card on his rack with the top card from the draw pile or the most recently discarded card. The card that is swapped out is placed face-up on the discard pile. The game ends when one player’s rack is totally ordered or when a set number of turns have been played.

Results for information set generation in Racko are shown in Table 1 (left). The table shows experimental data for instances of the game ranging in complexity from six slots per player and 30 total cards to the standard configuration of 10 slots per player and 60 total cards. Each entry in the table shows the number of information set nodes identified within the time limit. CSP-InfosetSample successfully samples information set nodes in each case, while DFS-Infoset is not able to find a single information set node in 19 of 20 games.

In the standard game, a player may have over ten billion nodes in its information set, so the ability to sample from the information set (rather than enumerate it in full) is crucial. As play proceeds and a player has opportunities to see what cards the opponent swaps out of its initial rack, the size of the information sets decreases. The propagation of the ramifications of these observations through the stage graph allows the CSP-InfosetSample algorithm to concretely identify the only plausible actions by the dealer during the rack initialization phase, which greatly improves the efficiency of search. This kind of inference would be hard-coded in a system designed specifically to play Racko. CSP-InfosetSample implements this reasoning in a generalized form.

Battleship In Battleship, players secretly deploy five ships on a 10x10 grid. Each ship occupies 2–5 consecutive horizontal or vertical grid spaces. Players then take turns calling out grid cells where they believe the opponent’s ships are. When a player calls out a cell, the opponent responds with ‘hit’ if the cell is occupied by a ship and ‘miss’ if it is not. The opponent is required to declare which ship was hit and must also declare ‘sunk’ if all other ships occupied by that ship have already been hit. The first player to sink all of her opponents ships wins.

We varied the number of ships in the game from one to five and the size of the grid (per side) from four cells to ten. In our experiments (Table 1, middle), CSP-InfosetSample is always successful in sampling information set nodes and in many cases produces the full information set. By contrast, the DFS algorithm finds fewer nodes in the information set and cannot find any information set nodes for many of the larger instances (more than three ships, or grids larger than 6x6).

Game of Pure Strategy The Game of Pure Strategy (GOPS) is described in (Luce and Raiffa 1957). A subset of a deck of cards is dealt such that each player has \(n \) cards and \(n \) additional cards lie in the middle. One by one, the cards in the middle are exposed. Players use the cards in their own hands to bid on the card shown. Players simultaneously declare their own bids, with the high bidder winning the card and scoring the number of points shown on the card. The player who has accumulated the most points at the end of the \(n \) bidding rounds wins.

Our results for GOPS (Table 1, right) show that, once again, CSP-InfosetSample succeeds in every case, while the DFS-Infoset is unable to find any information set nodes in over half of the game instances.

Conclusions and Future Work

The ability to reason about information sets at a logical level and to sample from them in a scalable way is necessary for general single-point decision-making. In our experiments, our constraint-based search methods far outperform existing depth-first search techniques on this task. The ability to identify game histories that are consistent with a sequence of observations makes it possible to recreate past positions from an opponent’s perspective and to reason about the opponent’s knowledge state at that position. Future work will elaborate on the opponent modeling and tree search aspects of game-play and how to combine these techniques to im-

<table>
<thead>
<tr>
<th>slots</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cards</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ships</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 1: (left) Racko. Variables: slots per player (row), total cards (column). (middle) Battleship. Variables: ships per player (row), grid cells per side (column). (right) Game of Pure Strategy (GOPS). Variables: bidding rounds (row), extra cards (column).
prove the quality of decision-making.

References

