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Abstract

Inverse Reinforcement Learning (IRL) is the prob-

lem of learning the reward function underlying a

Markov Decision Process given the dynamics of
the system and the behaviour of an expert. IRL
is motivated by situations where knowledge of the
rewards is a goal by itself (as in preference elici-
tation) and by the task of apprenticeship learning
(learning policies from an expert). In this paper

we show how to combine prior knowledge and evi-

dence from the expert’s actions to derive a probabil-
ity distribution over the space of reward functions.

We present efficient algorithms that find solutions

for the reward learning and apprenticeship learn-
ing tasks that generalize well over these distribu-
tions. Experimental results show strong improve-
ment for our methods over previous heuristic-based
approaches.
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the exper{Atkeson and Schaal, 19R7However the reward
function is generally the most succint, robust and trasadfier
representation of the task, and completely determinesghe o
timal policy (or set of policies). In addition, knowledge of
the reward function allows the agent to generalize betesi.
new policy can be computed when the environment changes.
IRL is thus likely to be the most effective method here.

In this paper we model the IRL problem from a Bayesian
perspective. We consider the actions of the expesvakence
that we use to update a prior on reward functions. We solve
reward learning and apprenticeship learning using thisepos
rior. We perform inference for these tasks using a modified
Markov Chain Monte Carlo (MCMC) algorithm. We show
that the Markov Chain for our distribution with a uniform
prior mixes rapidly, and that the algorithm converges to the
correct answer in polynomial time. We also show that the
original IRL is a special case of BIRL with a Laplacian prior.

There are a number of advantages of our technique over
previous work: We do not need a completely specified op-
timal policy as input to the IRL agent, nor do we need to
assume that the expert is infallible. Also, we can incorpo-

The Inverse Reinforcement Learning (IRL) problem is de-rate external information about specific IRL problems into
fined in [Russell, 199Bas follows: Determine The reward the prior of the model. . _ .
function that an agent is optimizingiven 1) Measurement _ IRL was first studied in the machine learning setting by
of the agent's behaviour over time, in a variety of circum-[Ng and Russell, 20davho described algorithms that found
stances 2) Measurements of the sensory inputs to that age®@timal rewards for MDPs having both finite and infinite
3) a model of the environment. In the context of Markov De-States. Experimental results show improved performance by
cision Processes, this translates into determining thanew OUr techniques in the finite case.
function of the agent from knowledge of the policy it exesute ~ The rest of this paper is organised as follows: In section
and the dynamics of the state-space. 2 we define our terms and notation. Section 3 presents our

There are two tasks that IRL accomplishes. The fisst, Bayesian model of the IRL process. Section 4 discusses how
ward learning is estimating the unknown reward function as to use this model to do reward learning and apprenticeship
accurately as possible. It is useful in situations where¢he learning while section 5 discusses the sampling procedure.
ward function is of interest by itself, for example when con- Sections 6, 7 and 8 then present experimental resultsedelat
structing models of animal and human learning or modellingvork and our conclusions respectively.
opponent in competitive games. Pokerbots can improve per-
formance against suboptimal human opponents by learning  preliminaries
reward functions that account for the utility of money, gref
ences for certain hands or situations and other idiosyiesras We recall some basic definitions and theorems relating to
[Billings et al, 1999. There are also connections to various Markov Decision Processes and Reinforcement Learning.
preference elicitation problems in econonfi8argent, 1994 A (finite) Markov Decision Problemis a tuple

The second task iapprenticeship learning using obser- (S, A, T, v, R) where
vations of an expert’s actions to decide one’s own behaviour e S is a finite set ofV states
It is possible in this situation to directly learn the polftgm o A={ay,...,ax}is asetofk actions



e T:5x A xS+ [0,1] is atransition probability func-

tion.

e v € [0,1) is thediscount factor

e R : S — Ris areward function with absolute value

bounded byR,,, 4.

The rewards are functions of state alone because IRL prob-
lems typically have limited information about the value of
action and we want to avoid overfitting.

A Markov Decision Proces@VIDP) is a tuple(S, A, T, v),
with the terms defined as before but without a reward func-
tion. To avoid confusion we will use the abbreviation MDP
only for Markov Decision Processes and not Problems.

We adopt the following compact notation frofhg and
Russell, 200bfor finite MDPs : Fix an enumeratiosy . . . sy
of the finite state spac€. The reward function (or any other
function on the state-space) can then be represented/sis an
dimensional vectoR, whoseith element isR(s;).

A (stationary)policy is a mapr : S — A and the (dis-
counted, infinite-horizomyalueof a policyr for reward func-
tion R at states € S,denoted/™ (s, R) is given by:

Figure 1: An example IRL problem. Bold lines represent the
optimal actiona; for each state and broken lines represent
some other action,. Actiona; in s; has probabilities 0.4,0.3
and 0.3 of going to states, s», s3 respectively, and all other

V™(s1,R) = B, 4, [R(s1) + YR(s2) + v*R(s3) + . . . |7] actions are deterministic.

wherePr (sis1|si, m) = T(si, 7(s:), si+1). The goal of stan-  g|ge\yhere) which explains why the policy tries to return to
dard Reinforcement Learning is to find aptimal policyr this state, whileR(-) and Rs(-) have high values at, and

such thatV™ (s, R) is maximized for alls € S by 7 = 7*. tivelv. Th bability distribution i ded t
Indeed, it can be shown (see for examiSatton and Barto, f;prfess%eni ;\rgi{ince?tz’iriyr.)m abiiity distribution IS nee
c

1999) that at least one such policy always exists for ergodi
MDPs. For the solution of Markov Decision Problems, itis 3.1 Evidence from the Expert

useful to define the following auxilliarg)-function Now we present the details of our Bayesian IRL model. We

Q™ (s,a,R) = R(s) + YEy ~1(s.0) [V (s, R)] derive a posterior distribution for the rewards from a prior
Y distribution and a probabilistic model of the expert’s ant
We also define the optim&@)-function Q*(-, -, R) as theQ)-  given the reward function.
function of the optimal policyr* for reward functionR. Consider an MDRV = (S, A, T,~). We assume that a re-
Finally, we state the following fundamental result con- ward functionR is chosen from a (known) prior distribution
cerning Markov Decision Problems (sEgutton and Barto, Px and an expertt’ operates in this MDP. The IRL agent
1999) : receives a series of observations of the expert’s behaviour
Theorem 1 (Bellman Equations). Let a Markov Decision Ox = {(s1,a1),(s2,a2) ... (sy,ax)} which means that

ProblemM = (S, A,T,~, R) and a policyr : S ~— A be was in states; and took actioru; at time step. For general-
e ity, we will not specify the algorithm that’ uses to determine

iven. Then, ) . . X .
g 1. Foralls € S,a € A, V™ andQ™ satisfy his (possibly stochastic) policy, but we make the following
’ ’ assumptions about his behaviour:
V™(s) = R(s)+ VZT(SJT(S), sSHV™(s') (1) 1. X is attempting to maximize the total accumulated re-
s/ ward according taR. For exampleX is not using an
Q"(s,a) = R(s)+~ Z T(s,a,s" )V (s epsilon greedy policy to explore his environment.
m 2. X executes a stationary policy, i.e. it is invariant w.r.t.

time and does not change depending on the actions and
observations made in previous time steps.

7(s) € argmax Q" (s, a) (2)  For example X’ could be an agent that learned a policy for
acA (M, R) using a reinforcement learning algorithm. Because
] the expert’s policy is stationary, we can make the following
3 Bayesian IRL independence assumption:

IRL is currently viewed as a problem of infering a single re- Prx(Ox|R) = Prx((s1,a1)|R)Prx((s2,az2)|R)

ward function that explains an agent's behaviour. However, Pr((sp,ax)|R)

there is too little information in a typical IRL problem totge e TANTk Gk

only one answer. For example, consider the MDP shown in The expert's goal of maximizing accumulated reward is
Figure 1. There are at least three reasonable kinds of rewartjuivalent to finding the action for which tiig value at each
functions: R, (-) has high positive value aj (and low values  state is maximum. Therefore the largef(s, a) is, the more

2. wis an optimal policy forM iff, for all s € S,



2. Many real world Markov decision problems have par-
simonious reward structures, with most states having

Sec41 _”R neglible rewards. In such situations, it would be better
-7 to assume a Gaussian or Laplician prior:
< 1 a2
RN PGaussian(R(S) = T) = e 22,Vse S
SS 2ro

Sec 4-2\\\77 1
@ @ @ PLaplace(R(S) = T) = —eiW,Vs cs
eoo0 20
3. If the underlying MDP represented a planning-type

problem, we expect most states to have low (or nega-
Figure 2: The BIRL process. On the left is our model and on tive) rewards but a few states to have high rewards (cor-
the right, our inference tasks. responding to the goal); this can be modeled Beta
distribution for the reward at each state, which has the
property of having modes at high and low ends of the

likely it is that X would choose action at states. This like-
reward space.

lihood increases the more confident we arétiis ability to
select a good action. We model this by an exponential dis- 1

tribution for the likelihood of(s;, a;), with Q* as a potential Ppeta(R(s) = 1) = () (1= )} Vs €8
function: Rmas man
axQ*(s1,0i,R) In section 6.1, we give an example of how a more informa-
Prx((si,a;)|R) = 7€ o tive prior can be constructed given the specifics of a pddicu

. ' . IRL problem.
whereay is a parameter representing the degree of confi-

dence we have imX’s ability to choose actions with high 4 |Inference
value. This distribution satisfies our assumptions andsy ea

to reason with. The likelihood of the entire evidence is: I Section 3, we presented our model of the BIRL process.
1 We use this model to carry out the two tasks described in
Prx(Ox|R) = Zeo‘xE(Oxm the introduction: reward learning and apprenticeshipniear

ing. Our general procedure is to derive minimal solutions fo
whereE(Ox, R) = >, Q*(si, a:, R) andZ is the appropriate  appropriate loss functions over the posterior (3). Somefsro
normalizing constant. We can think of this likelihood func- are omitted for lack of space.
tion as a Boltzmann-type distrbution with energyOy, R)

and temperature’. 4.1 Reward Learning
Now, we compute the posterior probability of reward func- Reward learning is an estimation task. The most common loss
tion R by applying Bayes theorem, functions for estimation problems are the linear and sqlare
error loss functions:
Pra(R|Ox) Prx(gﬂg)PR(R) Liinear (R, 1:{) = |R- 1:1 1
Lo Lsp(RR) = |R-R|s
axE(Ox,R ~ .
= i€ ¥ BOx R p r(R) (3)  whereR andR are the actual and estimated rewards, respec-

c tina th lizi tadt is hard. H tively. If R is drawn from the posterior distribution (3), it can
omputing the hormatzing cons IS hard. However OEe shown that the expected valudgfz (R, R) is minimized

the sampling algorithms we will use to do inference only nee LA i
the ratios of the densities at two points, so this is not aprobPY Settingk to the mean of the posterior (skerger, 1998.

lem. Similarily, the expected linear loss is minimized by sejti
_ to the median of the distribution. We discuss how to compute
3.2 Priors these statistics for our posterior in section 5.

When no other information is given, we may assume that the It is also common in Bayesian estimation problems to use
rewards are independently identically distributed (i)i.¢y ~ the maximum a posteriori (MAP) value as the estimator. In
the principle of maximum entropy. Most of the prior func- fact we have the following result:

tions considered in this paper will be of this form. The exactTheorem 2. When the expert’s policy is optimal and fully
prior to use however, depends on the characteristics of thepecified, the IRL algorithm diNg and Russell, 20Q0is

problem: equivalent to returning the MAP estimator for the model of
1. If we are completely agnostic about the prior, we can(3) With a Laplacian prior.
use the uniform distribution over the spae, ... < However in IRL problems where the posterior distribution

R(s) < R4, foreachs € S. If we do notwantto spec- is typically multimodal, a MAP estimator will not be as rep-
ify any R, we can try the improper prioP(R) = 1 resentative as measures of central tendency like the mean an
forall R € R™. the median.



4.2 Apprenticeship Learning

For the apprenticeship learning task, the situation is rivere
teresting. Since we are attempting to learn a poticwe can
formally define the following class gdolicy loss functiorns

Lzolicy(

R.m) =[| V' (R) - V™(R) ||,
whereV*(R) is the vector of optimal values for each state
acheived by the optimal policy faR andp is some norm.
We wish to find ther that minimizes the expected policy loss
over the posterior distribution faR. The following theorem

accomplishes this:

Theorem 3. Given a distribution”(R) over reward function
Rforan MDP(S, A, T, ), the loss functiod? ;.. (R, ) is
minimized for allp by 7}, the optimal policy for the Markov

Decision Problem\f = (S, A,T,~, Ep(R)).

Proof. From the Bellman equations (1) we can derive the fol-

lowing:
VI(R)=(I-~T")"'R (4)
whereT™ is the|S| x | S| transition matrix for policyr. Thus,

for a states € S and fixedr, the value function is a linear
function of the rewards:

V™(s,R) =w(s,7) - R

wherew(s, ) is thes’th row of the coefficient matriXI —
vT™)~tin (4). Suppose we wish to maximiZe[V ™ (s, R)]
alone. Then,

max E[V™(s,R)] = max Ew(s, m)-R] = max w(s, ) -E[R]

By definition this is equal td/};(s), the optimum value
function for M, and the maximizing policyr is 73, the op-
timal policy for M. Thus for all states € S, E[V™ (s, R)| is
maximum atr = 3.

ButV*(s,R) > V™ (s, R) for all s € S, reward functions
R, and policiesr. Therefore

E[Lyoicy(m)] = E(V*(R) = VT(R) [|,))

policy

Algorithm Pol i cyWal k(Distribution f, MDP M, Step Size’ )

1. Pick arandom reward vectdt € RSl /5.

2. m:=Policylteration(M,R)

3. Repeat
(a) Pick a reward vectaR uniformly at random from th

neighbours ofR in R/®! /5.

(b) ComputeQ™(s,a, R) forall (s,a) € S, A.
(c) If for any (s,a) € (S,A), Q"(s,n(s),R) <

v

QW(S,CL,R)
i. #:=Policylteration(M,R,x)
i. Set R := R andr := # with probability
min{l, {275}
Else ~
i. SetR := R with probabilitymin{1, £}
4. ReturnR

Figure 3: PolicyWalk Sampling Algorithm

for R, an expensive operation. Therefore, we use a modi-
fied version ofGri dWal k calledPol i cyWal k (Figure 3)
that is more efficient: While moving along a Markov chain,
the sampler also keeps track of the optimal policfor the
current reward vectolR. Observe that whem is known,

the @ function can be reduced to a linear function of the
reward variables, similar to equation 4.Thus step 3b can be
performed efficiently. A change in the optimal policy can
easily be detected when moving to the next reward vector
in the chainR, because then for som@,a) € (S, A4),

Q™ (s,7(s),R) < Q™(s,a,R) by Theorem 1. When this
happens, the new optimal policy is usually only slightly-dif
ferent from the old one and can be computed by just a few
steps of policy iteratior{Sutton and Barto, 1998starting
from the old policyr. Hence,Pol i cyWal k is a correct
and efficient sampling procedure.

The second concern for the MCMC algorithm is the speed
of convergence of the Markov chain to the equilibrium dis-
tribution. The ideal Markov chain ispidly mixing(i.e. the
number of steps taken to reach equilibrium is polynomially
bounded), but theoretical proofs of rapid mixing are rare. W

is minimized for allp by w = 73, L' Will show that in the special case of the uniform prior, the

So, instead of trying a difficult direct minimization of the Markov chain for our posterior (3) is rapidly mixing using
expected policy loss, we can find the optimal policy for thethe following result from{Applegate and Kannan, 19pthat

mean reward function, which gives the same answer. bounds the mixing time of Markov chains for psuedo-log-
concave functions.

Lemmal. LetF(-) be a positive real valued function defined
the cube{z € R"| — d < x; < d} for some positivel,
tisfying for all\ € [0, 1] and somey, (3

lf(x)=fW)l<allz—-vy|w

5 Sampling and Rapid Convergence

We have seen that both reward learning and apprenticesh@f
learning require computing the mean of the posterior digtri a
tion. However the posterior is complex and analytical deriv
tion of the mean is hard, even for the simplest case of the
uniform prior. Instead, we generate samples from these digand
tributions and then return the sample mean as our estimate of
the true mean of the distribution. The sampling technique we FOz+ (1= ANy) 2 Mf(2) + 1 =N fy) -6
use is an MCMC algorithrzr i dWal k [Vempala, 200bthat  where f(z) = log F'(z). Then the Markov chain induced by
generates a Markov chain on the intersection points of a gridy i d\Wal k (and hencePol i cyWal k) on F rapidly mixes
of lengthd in the regionR /! (denotedr %! /). to within e of F in O(n?d*a?¢*” log 1) steps.

However, computing the posterior distribution at a partic-

ular point R requires calculation of the optim#)-function 0

Proof. See[Applegate and Kannan, 1993
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Theorem 4. Given an MDPM = (S, A,T,~) with |§] = © EXperiments
N, and a distribution over reward®(R) = Prx(R|Ox)
defined by (3) with uniform prioPy; overC = {R € R"| — We compared the performance of our BIRL approach to the

Ryas < Ri < Ryaw}. If Rpaw = O(1/N) then P can be IRL algorithm of [Ng and Russell, 20Q0experimentally.

efficiently sampled (within erras) in O(N2log 1/¢) steps by ~ First, we generated random MDPs with states (with\'
algorithmPol i cyWal k. varying from 10 to 1000) and rewards drawn from i.i.d. Gaus-

sian priors. Then, we simulated two kinds of agents on these
Proof. Since the uniform prior is the same for all poif®&  MDPs and used their trajectories as input: The first learned
we can ignore it for sampling purposes along with the normala policy by Q-learning on the MDP + reward function. The
izing constant. Therefore, Igf(R) = axE(Ox, R). Now |earning rate was controlled so that the agent was not atlowe

choose some arbitrary polieyand let to converge to the optimal policy but came reasonably close.
_ ™ The second agent executed a policy that maximized the ex-
(R) = ai, R
f=(R) = ax EZ: Q" (s, ai, R)) pected total reward over the nexsteps g was chosen to be

Note thatf, is a linear function ofR and f(R) > f.(R), slightly below the hOI’IZOf? time). .
forall R € C. Also we have, For BIRL, we usedPol i cyWal k to sample the posterior

distribution (3) with a uniform prior. We compared the resul

max Q*(s,a) = max Q" (s,a) = max V. (s) < Ronaa of the two methods by their averagedistance from the true
5@ sam S L=y reward function (Figure 4) and the policy loss withnorm
Similarly, min; , @*(s,a) > _% Therefore,f(R) < (Figure 5) of the learned policy under the true reward. Both
aleviRw,m andf,(R) > — axszj%;,Ltll and hence measures show substantial improvement. ' o
2%avNR ~We also measured the accuracy of our posterior dls_trlbu—
f=(R) > f(R) — 20XV tmaz tion for small N by comparing it with the true distribution
I—~ of rewards i.e. the set of generated rewards that gave rise to
SoforallR,, R, € C andX € [0, 1], the same trajectory by the expert. In Figure 6, we show scat-
FOR +(1=NRy) > fr(ARi+(1—)\)Ry) ter plots of some rewards sampled from the posterior and the
> Ma(Ri)+ (1= N fa(Rs) true distribution for an MDP with 16 states. These figures
= T T2 show that the posterior comes very close to representing the
> A(R1)+ (1= f(Re) true distribution.
2ax N Rppax
-y 6.1 From Domain Knowledgeto Prior
Therefore,f satisfies the conditions of Lemma 1 wijth=
20xNRmao — o . O3) _ O(1) and Earlier we stated that domain knowledge about a problem can
1=y 1=y be incorporated into the IRL formulation as an informative
_ f(B) = f(Ro)| _ 20xNRinaw _ O(N) prior. To demonstrate this, we applied our methods to learn-

|Ri— Ry lec ~ (1—=7)0(%) B ing the reward function in adventure games. There, an agent

Hence the Markov chain induced by the Gridwalk algorithmeXp|°reS a du_ngeon, seeking to collect various items of trea

on P mixes rapidly to withire of P in a number of steps equal Sure and avoid oiistjagles SdUCh as gualrg_s or t][apts. The state
2.1 72,001 _ 2 space is represente andimensional binary feature vec-

O O(N 5z Ne Mlog1/e) = O(N*log1/e). = t(?r indicatir?g the positi}én of the agent and tﬁ/e value of var-

Note that havingR, ... = O(1/N) is not really a restric- ious fluents such asasKey anddoor Unl ocked. If we

tion because we can rescale the rewards by a constant factoview the state-space as andimensional latticd g, we see

after computing the mean without changing the optimal polthat neighbouring states ihg are very likely to have corre-

icy and all the value functions ar@ functions get scaled by lated rewards (e.g. it does not matteddor Locked is true

k as well. or false when the treasure chest is picked up). To model this,



Posterior Samples is a body of work oninverse problem theoryi.e. infering

B values of model parameters from observations of a physical
system[Tarantola, 200 In control theory,[Boyd et al,
1994 solved the problem, posed by Kalman, of recovering
the objective function for a deterministic linear systenthwi
quadratic costs.

T T
TueRewards 8 Conclusionsand Future Work

Our work shows that improved solutions can be found for
IRL by posing the problem as a Bayesian learning task. We
provided a theoretical framework and tractable algoritfons
Bayesian IRL and our solutions contain more information
about the reward structure than other methods. Our experi-
ments verify that our solutions are close to the true reward
functions and yield good policies for apprenticeship l&agn

Figure 6: Scatter diagrams of sampled rewards for two arbilhere are a few open questiqns remaining:
1. Are there more informative priors that we can construct

trary states (a projection of the entire 16-dimensionatspa
4 (& projecti I ! ! P for specific IRL problems using background knowledge?

for a given MDP and trajectory of expert. . 9.

g ) y P 2. How well does IRL generalize? Suppose the transition
function of the actor and the learner differed, how robust
would the reward function or policy learned from the

L . . , . | . .
8 08 04 0z (1Y 04 06 08
(51

Reward Loss

18 actor be, w.r.t the learner’s state space?

16
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