If you miss more than 4 classes (you do not attend) during the semester, strongly consider dropping the class.

+ 2 late days.

Independence \[\text{Conditional Probability} \]

Def: \(X, Y \) independent if \(\Pr(X/Y) = \Pr(X) \).

Input: Joint probability \(\frac{\Pr(X, Y)}{\Pr(X)} \)

Marginal = \(\Pr(X_i = x_i) \)

Basic Concept: Conditional Independence

Structure: Bayesian Networks

\[\frac{\Pr(X, Y)}{\Pr(X)} = \Pr(Y/X) \] Bayes Rule

\[\Pr(X) \] Chain Rule

\[\Pr(X, Y) = \Pr(X) \cdot \Pr(Y/X) \]

\[\Pr(X_1, ..., X_n) = \Pr(X_1) \cdot \Pr(X_2/X_1) \cdot ... \cdot \Pr(X_n/X_1, ..., X_{n-1}) \] Product Rule
Independence

\[P_r(X \mid Y) = P_r(X) \iff X, Y \text{ independent} \]

Claim: \(P_r(Y \mid X) = P_r(Y) \), given \(P_r(X \mid Y) = P_r(X) \).

Pf:

\[
P_r(Y \mid X) = \frac{P_r(X, Y)}{P_r(X)} = \frac{P_r(Y) \cdot P_r(X \mid Y)}{P_r(X)} = \frac{P_r(Y) \cdot P_r(X)}{P_r(X)} = P_r(Y)
\]

\(\text{Bayes Chain Rule} \)

\(X, Y \text{ indep.} \)

\[\boxed{-2} \]

Claim: \(P_r(X, Y) = P_r(X) \cdot P_r(Y) \), if \(X, Y \text{ indep.} \).

Pf:

... work at home (in 1 min)

\[\square \]

Task: If we classify 10 types of hair colors and have 68 people in CS440 + Staff, how many entries in the Joint Probability table?

\[P_r(C_1 \ldots C_{68}) \]

1068

\[\text{rows ?} \]

Example from before:

\[\begin{array}{ccc}
\text{C}_1 & \text{C}_2 & \text{C}_3 \\
\text{C}_4 & \text{C}_5 & \text{C}_6 \\
\text{C}_{68} & & \\
\end{array} \]

We will be given these parameters

\[P_r(B, E, A, R, C) = \]

\[= P_r(E) \cdot P_r(B) \cdot P_r(A \mid B, E) \cdot P_r(R \mid E) \cdot P_r(C \mid A) \]
Using independence: \(\Pr(C_i \mid C_{68}) = \prod_{i=1}^{68} \Pr(C_i) \)

<table>
<thead>
<tr>
<th>(C_1)</th>
<th>(\Pr(C_1))</th>
<th>(C_{68})</th>
<th>(\Pr(C_{68}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(p_1^*)</td>
<td>1</td>
<td>(p_{68}^*)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>10</td>
<td>(p_{10}^*)</td>
<td>10</td>
<td>(p_{10})</td>
</tr>
</tbody>
</table>

Questions: How many parameters \((p_i^*) \) do I need to specify \(\Pr(C_1 \cdots C_{68}) \) ?

Answer: \(68 \times 9 \)

\(p_0^* = 1 - \sum_{i=1}^{9} p_i^* \)

Definition: With a DAG \(G(V,E) \)

\[V = \{ X_1, \ldots, X_n \} \]

\[\Pr(X_1, \ldots, X_n) = \prod_{i=1}^{n} \Pr(X_i \mid Pa(X_i)) \]

Example from before:

We will be given these parameters:

\[\Pr(B, E, A, R, C) = \]

\[= \Pr(E) \cdot \Pr(B) \cdot \]

\[\cdot \Pr(A \mid B, E) \cdot \]

\[\cdot \Pr(R \mid E) \cdot \Pr(C \mid A) \]