CS440 1/28/10

Gaussians, Mean, Variance

Mean → Random Variable

Sample

$X \sim N(\mu, \sigma^2)$

$X = \text{position of a pen on floor}$

3, -1, 0, -0.5

Mean of Samples $= \frac{1}{4} \cdot (3 + (-1) + 0 + (-0.5))$

$= \frac{3}{8}$

Variance → Random Var

Sample

$\text{Discrete} \rightarrow \frac{1}{n} \cdot \sum_{i=1}^{n} p(x_i)$

$\text{Continuous} \rightarrow \int_{\text{Dom}(x)} p(x) \cdot \text{d}x$
Variance \((X) \) = \(\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 \)
\(\mu = E(X) \) = mean of RV \(X \).

Variance \((X_i - \bar{X}) \) = \(\frac{1}{m} \sum_{i=1}^{m} (X_i - \bar{X})^2 \)

\(\bar{X} = \frac{1}{m} \sum_{i=1}^{m} X_i \)
mean of Sample

Estimate Variance of \(X \) from sample set \(X_1 \ldots X_m \)

\[\Rightarrow \frac{1}{m-1} \sum_{i=1}^{m} (X_i - \bar{X})^2 \]
Mathematical proof that

\[A \land B = A \]

Every model of \(A \land B \) is a model of \(A \).

pf:

Truth table. \(A, B \) prop vars.

\[
\begin{array}{c|c|c}
A & B & A \land B \\
\hline
T & T & T \\
T & F & F \\
F & T & F \\
F & F & F \\
\end{array}
\]

Let \(M \) be a model of \(A \land B \).

Then \(\ldots M \models A \).

\(M \) is a model of \(A \land B \) \(\Rightarrow \) \((A \land B)[M] = TRUE \)

\(\Rightarrow A[M] = TRUE \)

Follow def. & evaluate at formula in truth assignment.